

## ASSOCIATED RISK FACTORS OF VITAMIN D DEFICIENCY IN RURAL COMMUNITIES OF LAHORE, PAKISTAN

Original Research

**Dr Syed Muneedb Gillani<sup>1\*</sup>, Shanawar Hayat<sup>2</sup>, Aiza Ali<sup>3</sup>, Dr Muhammad Arif<sup>4</sup>**

<sup>1</sup> PhD Nutritional Sciences Assistant Professor Avicenna Medical College

<sup>2</sup> Nutritional Sciences Senior Clinical Nutritionist Avicenna Medical College & Hospital

<sup>3</sup> BSN Generic (UHS), Nursing Instructor, Abbas Institute of Medical Sciences Layyah

<sup>4</sup> Assistant Professor, Department of Human Nutrition, The University of Agriculture, Peshawar (Pakistan)

**Corresponding Author:** Dr Syed Muneedb Gillani, PhD Nutritional Sciences Assistant Professor Avicenna Medical College  
[muneebgilani7@gmail.com](mailto:muneebgilani7@gmail.com)

Conflict of Interest: None

Grant Support & Financial Support: None

### ABSTRACT

**Background:** Vitamin D deficiency is a global health concern linked to bone disorders, cardiometabolic diseases, autoimmune conditions, and certain cancers. Despite abundant sunlight, South Asian populations, including Pakistan, have high deficiency rates due to limited sun exposure, cultural practices, and dietary insufficiency. This study aimed to determine the prevalence of severe vitamin D deficiency and its associated risk factors among the rural population of Lahore, Pakistan.

**Methods:** An analytical cross-sectional study was conducted from December 2023 to June 2024 in rural areas of Lahore. A total of 800 adults ( $\geq 18$  years) with confirmed vitamin D deficiency (serum 25(OH)D  $< 20$  ng/mL) were recruited from outpatient clinics, primary health units, and laboratory collection sites. Data on demographics, sun exposure, and anthropometric measures were collected. Severe deficiency was defined as  $< 10$  ng/mL. Frequencies and percentages summarized participant characteristics, and associations between risk factors and severe deficiency were assessed using chi-square tests and multivariable logistic regression.

**Results:** Of 800 participants, 65.0% were female, and the largest age group was 40–59 years (41.0%). Most (82.0%) were married, and 33.0% worked outside the home. Sun exposure was limited, with 68.6% reporting  $< 1$  hour per week; sunscreen use was minimal (3%). Overweight and obesity affected 38.3% and 59.5% respectively. In adjusted analysis,  $< 1$  hour of sun exposure per week was associated with more than double the odds of severe deficiency (aOR = 2.38; 95% CI: 1.68–3.38). Obesity (aOR = 1.61; 95% CI: 1.05–2.45) and abdominal obesity in women (aOR = 1.68; 95% CI: 1.10–2.58) were also significant predictors.

**Conclusion:** Severe vitamin D deficiency is highly prevalent among rural residents of Lahore and is strongly associated with low sun exposure, obesity, and abdominal obesity. Public health strategies promoting safe sunlight exposure, culturally appropriate behavioral changes, and targeted supplementation programs are urgently needed to mitigate the health burden in these communities.

**Keywords:** Risk Factors, Rural areas, Vitamin D Deficiency

## INTRODUCTION

Globally, hypovitaminosis D is a health concern<sup>(1)</sup>. 25-hydroxy deficiency is defined as serum levels of less than 20 ng/ml of vitamin D (25[OH]D) while those possessing 25(OH)D serum values between 20 and 29.9 ng/ml belong to the group of people who are deficient in vitamin D<sup>(2)</sup>. Because parathyroid hormone starts to rise at cut point blood levels of less than 20 ng/ml, vitamin D insufficiency has been established at these levels. As a result, this threshold is regarded as the physiological definition of vitamin D insufficiency<sup>(3)</sup>. However, the findings of various studies' health outcome assessments showed that the current target 25(OH)D concentration of 30 ng/mL (75nmol/L) for vitamin D deficiency was exceeded by all-cause mortality, cardiovascular diseases, breast and colorectal cancers, diabetes mellitus, acute respiratory tract infections, and SARS-CoV-2 positivity<sup>(4)</sup>. Interestingly, some of the previously described results improved even up to 25(OH)D levels of 60–80 ng/ml.

There is a strong correlation between low serum levels of vitamin D and both communicable and non-communicable diseases, and vitamin D insufficiency has been documented worldwide<sup>(5)</sup>. There is growing evidence that vitamin D has positive impacts on our organs and tissues<sup>(6)</sup>. In addition, higher vitamin D levels are associated with lower rates of cancer and its associated deaths<sup>(7)</sup>. Furthermore, there is a strong correlation between vitamin D insufficiency and autoimmune disorders such as rheumatoid arthritis, multiple sclerosis, high blood pressure, and type I diabetes<sup>(8)</sup>.

Numerous large multi-central interventional trials with vitamin D administration are being investigated worldwide due to the substantial impact of vitamin D on bone mineral homeostasis, bone mineral density, and ultimately increasing bone mass<sup>(9)</sup>. Although plants only contain a little quantity of vitamin D, fish oil, calf liver, cheese, and egg yolks can all provide enough amounts of vitamin D<sup>(10)</sup>. Vitamin D insufficiency may also be caused by rickets, hyperparathyroidism, nephrotic syndrome, acute liver failure, and renal illness<sup>(11)</sup>. The main reasons of vitamin D insufficiency are geographic location, skin color, skin coverage techniques, and consumption of foods low in vitamin D<sup>(12)</sup>.

Although the number of cases of vitamin D insufficiency in Pakistan is increasing, this has not given the problem the attention it deserves<sup>(13)</sup>. Vitamin D deficiency is common and affects people of all ages, in all nations, and in all ethnic groups<sup>(14)</sup>. The purpose of the current study was to ascertain the prevalence of vitamin D insufficiency in Lahore, Pakistan's rural and associated risk factors population.

## METHODS

Analytical cross-sectional study was carried out over a six-month period in rural neighborhoods of Lahore, Pakistan from December 2023 to June 2024 to evaluate related risk variables among people with verified vitamin D deficiency. Outpatient clinics, primary health units, and laboratory collection sites were the successive locations from which participants were gathered. A total of 800 participants with confirmed vitamin D deficiency were enrolled. The required sample size was estimated at a 95% confidence level with a  $\pm 4\%$  margin of error and an assumed proportion of 50% for key risk factors. Adults who were 18 years of age or older, had lived in rural Lahore for at least six months, and had a recorded blood 25-hydroxyvitamin D [25(OH)D] concentration of less than 20 ng/mL as of four weeks before recruitment were eligible to participate. Those with advanced chronic kidney disease receiving dialysis, granulomatous illnesses, pregnancy, lactation, or cancer undergoing chemotherapy were not included. Data were analyzed using IBM SPSS Statistics Version 26.0. Demographic and lifestyle characteristics of the participants were summarized as frequencies and percentages. The association between severe vitamin D deficiency ( $<10$  ng/mL) and selected risk factors was assessed using the chi-square test for categorical variables. Variables that showed a  $p$ -value  $<0.20$  in the bivariate analysis were entered into a binary logistic regression model to obtain adjusted odds ratios (aORs) with 95% confidence intervals (CIs). Statistical significance was set at  $p < 0.05$ .

## RESULTS

Table 1 shows the demographic and lifestyle characteristics of the 800 participants diagnosed with vitamin D deficiency. The majority were females (65.0%), and the most common age group was 40–59 years (41.0%), followed by 22–39 years (36.0%). Most participants were married (82.0%), while 10.0% were single, and a smaller proportion were widowed or separated. Only one-third (33.0%) reported working outside the home. Weekly sun exposure was generally low, with 71.0% reporting less than one hour per week, and 48.0% reporting daily exposure of more than 30 minutes. Sunscreen use was negligible in this rural setting. Overweight and obesity were prevalent, affecting 38.3% and 59.5% of participants respectively, while 37.0% of women and 5.0% of men had waist circumferences above the recommended thresholds.

Table 2 presents the association between selected risk factors and severe vitamin D deficiency ( $<10$  ng/mL). In bivariate analysis, lower weekly sun exposure, obesity, and abdominal obesity showed significant associations. After adjusting for potential confounders in a logistic regression model, participants with less than one hour of sun exposure per week had over three times higher odds of severe deficiency compared to those with more exposure (aOR = 3.41; 95% CI: 2.12–5.48). Obese individuals had approximately double the odds (aOR = 2.09; 95% CI: 1.42–3.08), and abdominal obesity in women was also a significant predictor (aOR = 1.68; 95% CI: 1.10–2.58).

**Table 1: Demographic Characteristics of participants**

| Variable                            | Number (%)  |
|-------------------------------------|-------------|
| <b>Age group (years)</b>            |             |
| <22                                 | 80 (10.0%)  |
| 22–39                               | 288 (36.0%) |
| 40–59                               | 328 (41.0%) |
| ≥60                                 | 104 (13.0%) |
| <b>Sex</b>                          |             |
| Male                                | 280 (35.0%) |
| Female                              | 520 (65.0%) |
| <b>Marital status</b>               |             |
| Single                              | 82 (10.3%)  |
| Married                             | 656 (82.0%) |
| Widow(er)                           | 54 (6.8%)   |
| Separated                           | 8 (1.0%)    |
| <b>Working outside the home</b>     | 264 (33.0%) |
| <b>Mean sun exposure per week</b>   |             |
| <1 hour                             | 549 (68.6%) |
| 2–10 hours                          | 64 (8.0%)   |
| 11–20 hours                         | 61 (7.6%)   |
| >21 hours                           | 126 (15.8%) |
| <b>Average sun exposure per day</b> |             |
| <5 min                              | 48 (6.0%)   |
| 5–15 min                            | 152 (19.0%) |
| 16–30 min                           | 160 (20.0%) |
| >30 min                             | 440 (55.0%) |
| <b>Use of SPF sunscreen</b>         | 24 (3%)     |
| <b>Waist circumference</b>          |             |
| Men >90 cm                          | 40 (5.0%)   |
| Women >80 cm                        | 296 (37.0%) |
| <b>BMI category</b>                 |             |
| Normal weight                       | 18 (2.3%)   |
| Overweight                          | 306 (38.3%) |
| Obese                               | 476 (59.5%) |
| <b>WHR</b>                          |             |
| <0.9 for men                        | 194 (24.3%) |
| <0.85 for women                     | 386 (48.3%) |

BMI: Body Mass Index; WHR: Wrist Hip Ratio

**Table 2: Factors associated with Vitamin D deficiency**

| Variable                     | Severe<br>Deficiency<br>n (%) | Moderate<br>Deficiency<br>n (%) | Crude<br>(95% CI) | OR               | Adjusted<br>(95% CI) | OR     | p-<br>value |
|------------------------------|-------------------------------|---------------------------------|-------------------|------------------|----------------------|--------|-------------|
| <b>Age group</b>             |                               |                                 |                   |                  |                      |        |             |
| <b>&lt;22 years</b>          | 36 (45.0)                     | 44 (55.0)                       | 1.28 (0.77–2.12)  | 1.09 (0.63–1.87) |                      | 0.75   |             |
| <b>22–39 years</b>           | 114 (39.6)                    | 174 (60.4)                      | 1.00              | 1.00             |                      | –      |             |
| <b>40–59 years</b>           | 122 (37.2)                    | 206 (62.8)                      | 0.90 (0.67–1.20)  | 0.88 (0.64–1.21) |                      | 0.43   |             |
| <b>≥60 years</b>             | 40 (38.5)                     | 64 (61.5)                       | 0.95 (0.61–1.48)  | 0.90 (0.56–1.43) |                      | 0.68   |             |
| <b>Sex</b>                   |                               |                                 |                   |                  |                      |        |             |
| <b>Male</b>                  | 114 (40.7)                    | 166 (59.3)                      | 1.09 (0.82–1.44)  | 1.11 (0.81–1.53) |                      | 0.50   |             |
| <b>Female</b>                | 198 (38.1)                    | 322 (61.9)                      | 1.00              | 1.00             |                      | –      |             |
| <b>Sun exposure per week</b> |                               |                                 |                   |                  |                      |        |             |
| <b>&lt;1 hour</b>            | 248 (45.2)                    | 301 (54.8)                      | 2.46 (1.77–3.43)  | 2.38 (1.68–3.38) |                      | <0.001 |             |
| <b>≥1 hour</b>               | 64 (24.1)                     | 187 (75.9)                      | 1.00              | 1.00             |                      | –      |             |
| <b>BMI category</b>          |                               |                                 |                   |                  |                      |        |             |
| <b>Normal weight</b>         | 4 (22.2)                      | 14 (77.8)                       | 1.00              | 1.00             |                      | –      |             |
| <b>Overweight</b>            | 96 (31.4)                     | 210 (68.6)                      | 1.60 (0.52–4.97)  | 1.44 (0.47–4.42) |                      | 0.53   |             |
| <b>Obese</b>                 | 212 (44.5)                    | 264 (55.5)                      | 2.82 (0.94–8.46)  | 1.61 (1.05–2.45) |                      | 0.028  |             |

## DISCUSSION

The study shows that a significant number of people living in rural Lahore have severe vitamin D insufficiency, and that there are significant correlations between poor sun exposure, obesity, and abdominal obesity. In line with findings from earlier research in South Asia, where cultural customs, dress codes, and a lack of outdoor activities considerably lower effective ultraviolet B (UVB) exposure even in the face of abundant sunlight, most participants reported less than an hour of sun exposure per week. The low level of sunscreen use in our sample is indicative of rural lifestyle patterns, where people are less aware of photoprotection<sup>(15)</sup>.

However, sun avoidance because of cultural norms and the climate leads to vitamin D deficiency. This study's finding of a link between obesity and severe vitamin D deficiency confirms previous research that suggested increased adipose tissue may sequester vitamin D, lowering its bioavailability<sup>(16)</sup>. In a similar vein, abdominal obesity, especially in women, became a separate predictor of deficiency and has been connected in previous studies to both decreased outdoor activity and metabolic changes. These results highlight how environmental, behavioral, and physiological factors interact to cause vitamin D insufficiency. Targeted public health measures are necessary due to the clinical consequences of chronic vitamin D deficiency, which include osteoporosis, musculoskeletal weakness, and possible associations with cardiometabolic illnesses. In order to address both the modifiable risk factors and the underlying socio-environmental determinants, strategies such culturally relevant behavioral changes, nutritional supplements, and community-based awareness campaigns should be taken into consideration<sup>(17)</sup>.

The results of this study may not be as applicable to urban or mixed communities because it was carried out among identified cases of vitamin D insufficiency in a rural community. A causal association between the observed risk variables and vitamin D level cannot be established due to the cross-sectional design. Furthermore, other potentially significant variables were not evaluated, including genetic factors, seasonal variance, and dietary vitamin D intake. To better understand causality, future studies should use longitudinal designs, involve bigger and more diverse groups, and integrate environmental, nutritional, and biochemical evaluations. The implementation of cost-effective supplementation programs customized for rural populations, promotion of safe sun exposure practices, and screening for high-risk groups should be the top priorities for public health authorities.

## CONCLUSION

Severe vitamin D deficiency is highly prevalent among the rural population of Lahore and is significantly associated with limited sun exposure, obesity, and abdominal obesity. The burden of vitamin D insufficiency and its long-term health effects in rural areas can be lessened by addressing these risk factors within the local sociocultural context.

## AUTHOR's CONTRIBUTION:

| Author                  | Contribution                                                                                                                                                                                                                              |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dr Syed Muneedb Gillani | Conceptualization; formal analysis & interpretation; writing – original draft; visualization; data curation quality assurance.                                                                                                            |
| Shanawar Hayat          | Resources provision; supervision of fieldwork; writing support; ethics & compliance oversight; final approval, methodology execution; manuscript editing; final endorsement; oversight of data analysis.                                  |
| Aiza Ali                | Data collection; investigation; software & experimental protocol setup; validation; data curation, Statistical support; optimization of research workflows; assistance in data interpretation; technical guidance; manuscript refinement. |
| Dr Muhammad Arif        | Supervision; methodology design; writing – review & editing; project administration; funding acquisition.                                                                                                                                 |

## REFERENCES

1. Mithal A, Wahl DA, Bonjour JP, Burckhardt P, Dawson-Hughes B, Eisman JA, El-Hajj Fuleihan G, Josse RG, Lips P, Morales-Torres J, IOF Committee of Scientific Advisors (CSA) Nutrition Working Group. Global vitamin D status and determinants of hypovitaminosis D. *Osteoporosis international*. 2009 Nov;20(11):1807-20.
2. Zeng S, Chu C, Doebs C, von Baehr V, Hocher B. Reference values for free 25-hydroxy-vitamin D based on established total 25-hydroxy-vitamin D reference values. *The Journal of Steroid Biochemistry and Molecular Biology*. 2021 Jun 1;210:105877.
3. Martins JS, Palhares MD, Teixeira OC, Gontijo Ramos M. Vitamin D status and its association with parathyroid hormone concentration in Brazilians. *Journal of nutrition and metabolism*. 2017;2017(1):9056470.
4. Amrein K, Scherkl M, Hoffmann M, Neuwersch-Sommeregger S, Köstenberger M, Tmava Berisha A, Martucci G, Pilz S, Malle O. Vitamin D deficiency 2.0: an update on the current status worldwide. *European journal of clinical nutrition*. 2020 Nov;74(11):1498-513.
5. Nemeth Z, Patonai A, Simon-Szabó L, Takács I. Interplay of vitamin D and SIRT1 in tissue-specific metabolism—Potential roles in prevention and treatment of non-communicable diseases including cancer. *International journal of molecular sciences*. 2023 Mar 24;24(7):6154.
6. Zmijewski MA. Vitamin D and human health. *International journal of molecular sciences*. 2019 Jan 3;20(1):145.
7. Grant WB. An estimate of the global reduction in mortality rates through doubling vitamin D levels. *European journal of clinical nutrition*. 2011 Sep;65(9):1016-26.
8. Illescas-Montes R, Melguizo-Rodríguez L, Ruiz C, Costela-Ruiz VJ. Vitamin D and autoimmune diseases. *Life sciences*. 2019 Sep 15;233:116744.
9. Marzban M, Kalantarhormozi M, Mahmudpour M, Ostovar A, Keshmiri S, Darabi AH, Khajeian A, Bolkheir A, Amini A, Nabipour I. Prevalence of vitamin D deficiency and its associated risk factors among rural population of the northern part of the Persian Gulf. *BMC Endocrine Disorders*. 2021 Nov 3;21(1):219.
10. Benedik E. Sources of vitamin D for humans. *International Journal for Vitamin and Nutrition Research*. 2021 Oct 18.
11. Charoenngam N, Ayoub D, Holick MF. Nutritional rickets and vitamin D deficiency: Consequences and strategies for treatment and prevention. *Expert Review of Endocrinology & Metabolism*. 2022 Jul 4;17(4):351-64.
12. Syed F, Latif MS, Ahmed I, Bibi S, Ullah S, Khalid N. Vitamin D deficiency in Pakistani population: critical overview from 2008 to 2018. *Nutrition & Food Science*. 2020 Jan 22;50(1):105-15.
13. Riaz H, Finlayson AE, Bashir S, Hussain S, Mahmood S, Malik F, Godman B. Prevalence of Vitamin D deficiency in Pakistan and implications for the future. *Expert review of clinical pharmacology*. 2016 Feb 1;9(2):329-38.
14. Prentice A. Vitamin D deficiency: a global perspective. *Nutrition reviews*. 2008 Oct 1;66(suppl\_2):S153-64.
15. Sultana N. Sun awareness and sun protection practices. *Clinical, cosmetic and investigational dermatology*. 2020 Sep 29:717-30.
16. Carrelli A, Bucovsky M, Horst R, Cremers S, Zhang C, Bessler M, Schrophe B, Evanko J, Blanco J, Silverberg SJ, Stein EM. Vitamin D storage in adipose tissue of obese and normal weight women. *Journal of Bone and Mineral Research*. 2017 Feb 1;32(2):237-42.\
17. Ibeagu Y. The association of mothers' socio-cultural environment with the dietary diversity of their children aged 6 to 24 months from olievenhoutbosch township in gauteng. *University of South Africa*. 2019 Nov.